基于发光二极管环形阵列与漫反射表面的 均匀照明光源研究

祝振敏 曲兴华 梁海昱 贾果欣

(天津大学精密测试技术及仪器国家重点实验室,天津 300072)

摘要 均匀的照明条件与光源良好的混色效果是彩色视觉的重要组成部分。基于发光二极管(LED)环形阵列与 高漫反射率表面,研究了一种间接照明的均匀光源,建立了数学模拟算法。根据单个 LED 的朗伯体特性,讨论了 LED 环形阵列在半球形内表面上的辐照分布。半球形内表面是高漫反射率表面,可近似看作朗伯表面,将光均匀 地反射到检测平面上。通过半球形内表面的双向反射分布函数(BRDF),仿真了检测平面的照度均匀性。并通过 实验证实了该照明方式与数学模拟算法的正确性。实验所得的多波段 LED 阵列混光图像效果良好,光照均匀度 95.5%满足彩色视觉测量的需要。证实了该方法设计均匀照明光源的有效性。

关键词 机器视觉;彩色视觉;均匀方法;间接方法;漫反射表面

中图分类号 TN312.8 文献标识码 A doi: 10.3788/AOS201131.0115001

Uniform Illumination Study by Light-Emitting Diode Ring Array and Diffuse Reflection Surface

Zhu Zhenmin Qu Xinghua Liang Haiyu Jia Guoxin

(State Key Laboratory of Precision Measuring Technology and Instrument, Tianjin University, Tianjin 300072, China)

Abstract Well mixed-color distribution of illumination and uniform illuminated environment are the common requirements in color vision applications. Using three-ring light-emitting diode (LED) array and diffuse reflection surface, an indirection method for the uniform illumination is proposed, and a mathematic simulation algorithm is constructed. Based on the Lambertian characteristic of a sing LED, the irradiance distribution over a sphere inner surface to the three-ring LED array is discussed. Then light is reflected to the detected surface by sphere inner surface. The sphere inner surface with high diffuse reflectance can be seemed as a Lambertian surface. According to bi-directional reflectance distribution functions (BRDF) of sphere inner surface, the uniformity of irradiance distribution results and the indirection method. Some experimental images show uniform mixed-color distribution and the illumination uniformity of 95.5% can fulfill the meets of color vision applications. The experimental results confirm that this method is useful for the uniform illumination design.

Key words machine vision; color vision; uniform illumination; indirection method; diffuse surface OCIS codes 150.2954; 330.1720; 230.3670; 290.1483

1 引 言

随着科技的发展,发光二极管(LED)凭借着发 光效率、紧凑性、安全性和稳定性上的独特优 势^[1~4],越来越广泛地应用于图像彩色视觉这样需 要均匀照明条件的领域。在彩色视觉系统中,光源 的光照均匀程度以及光源颜色会影响图像的分辨率 和检测目标的对比度^[5~8]。图像中检测目标的高对 比度能简化图像算法,且能提高彩色视觉系统的可

收稿日期: 2010-05-11; 收到修改稿日期: 2010-07-01

基金项目:国家自然科学基金(50875185)和天津市应用基础及前沿技术重点项目(09JCZDJC23600)资助课题。

作者简介:祝振敏(1984—),男,博士研究生,主要从事彩色视觉测量方面的研究。E-mail: zhuzhenmin1984@163.com **导师简介**:曲兴华(1956—),男,博士,教授,主要从事精密光电测量方面的研究。E-mail: xinghuaq@sina.com

本文电子版彩色效果详见中国光学期刊网(http://www.opticsjournal.net)

靠性。Kopparapu^[7]采用模拟退火算法确定光源的 位置,得到均匀的照明环境用于视觉检测。因此设 计均匀的照明环境对于提高彩色视觉检测系统的检 测精度非常重要。

LED 的出光为 Lambertian 分布,如果不经过 合适的光学设计^[8,9],很难满足彩色视觉的需要。 Moreno 等^[1,4,10,11]利用各种 LED 阵列(环形,线形, 方形,球形)直射有效地得到了均匀照明。A. J. W. Whang 等^[12]利用透镜改变各种阵列中的 LED 的发光角度,直射形成均匀照明。但是当多个波段 的 LED 应用于光源照明时,采用直射方式往往会出 现混光不均的问题。

因此本文针对彩色视觉系统对于光源的这些要求,利用 LED 环形阵列与高漫反射表面提出了间接照明的方式,给出了数学模拟算法,对光照均匀性进行了仿真。并通过实验验证该光源设计和数学模拟算法的有效性。

2 LED 照度模型

为了构建整个系统的数学模拟算法,首先需要 先建立单个 LED 照度模型。单个 LED 的发光尺寸 一般都小于 1 mm,相对其照明距离来讲可以忽略, 可近似为一个点光源。理想 LED 点光源的辐射分 布是一个余弦函数,可用下式表达^[10]:

 $E(r,\theta) = E_0(r)\cos^{m}\theta$, (1) 式中 $E(r,\theta)$ 为辐射照度,r为 LED 与该平面之间的 距离, θ 为光线与光轴的夹角,m为与 LED 半衰角有 关的数值。如果发光源为近似朗伯体,那么 $m \approx 1$ 。 实际上,一般的 LED 的m值都大于1,并由其半衰角 $\theta_{1/2}$ 确定。半衰角 $\theta_{1/2}$ 由 LED 生产厂家提供,定义为 当辐射强度为 $\theta = 0$ 方向上辐射强度的一半时,光线 与光轴的夹角。当 $\theta = \theta_{1/2}$, $E(r,\theta) = 1/2E_0(r)$,代入 (1)式,m值可由下式得出:

$$m = \frac{-\ln 2}{\ln(\cos \theta_{1/2})},\tag{2}$$

当 LED 照射到与其光轴方向垂直的平面上时,(1) 式可以转化为

$$E(r,\theta) = \frac{I_{\text{LED}} \cos^{m} \theta}{d^{2}}, \qquad (3)$$

式中 *d* 为 LED 与该平面之间的距离, *I*_{LED} 为 LED 法线上的光强。将(3)式转换为笛卡尔坐标(*x*, *y*, *z*), 可表示为

$$E(x, y, z) = \frac{z^m I_{\text{LED}}}{\left[(x - x_0)^2 + (y - y_0)^2 + z^2 \right]^{(m+2)/2}},$$
(4)

式中 E 为该平面上的辐射照度, (x_0, y_0) 为 LED 的 位置坐标。(4)式就是后文分析中要用到的单个 LED 的辐照分布。

实际中,LED即使是同一规格、同一批次生产的,其光学特性也会有一定差别。为了使光源具有更好的均匀性以及混色性,因此非常有必要对LED进行挑选。为了尽量减小周围环境的影响,本实验在暗室中进行,给单个LED施加20mA的工作电流,距离其1m处,安置PR-655分光式辐射度计(Photo Research Inc.)测量其亮度及主波长,挑选出光学特征值相近的LED进行实验。图1为其中一个红色LED测得的亮度以及光谱能量分布。以后的仿真分析中,近似认为同规格的LED具有相同的亮度值以及主波长。

图 1 挑选的红色 LED 的光谱分布 Fig. 1 Spectral distribution of a selected LED with red color

3 均匀照明光源研究

在彩色视觉系统中,可能需要应用几个波段独 立照明或者多个波段组合照明的方法来增强检测目 标与背景的对比度。因此在保证光源的光照均匀度 的同时,还需要考虑两个波段或者多个波段的 LED 混合以后的混光均匀度的问题。而采用直接向下照 射的方式时,总会在边缘或者中间的某些区域出现 混光不均的问题。直接向下照射的方式存在的第二 个问题是,当 LED 的面板尺寸大于或远大于照射平 面与 LED 面板之间的距离时,照射平面的辐照均匀 度很高。但是当 LED 的面板尺寸小于或等于照射平 面与 LED 之间的距离时,照射平面的辐照分布均匀 性较差^[10]。为了解决这些问题,本文采用了间接照 明的方式。通过高漫反射率的半球形内表面将光均 匀地反射到检测平面上。在下一节讨论了 LED 阵列 发射出的光到半球形内表面上的辐照分布。

3.1 LED 环形阵列

LED 的阵列分布有很多种形式,如环形,线形,

正方形以及球形。但在彩色视觉应用中,最常用的 是环形阵列分布^[11]。根据彩色视觉系统的实际需 要,各种波段的 LED 都有可能用于增加检测目标的 对比度。本文选择了三种比较典型波段(620,520 和 465 nm)的 LED 作为例子进行研究。由于采用 了间接照明的方式,光的能量损耗比较大。因此为 了保证光源有足够的亮度照明,选择了最为紧密的 排列。其分布方式如图 2 所示。三环形阵列 LED 放置于 *xy* 平面上,如图 3 所示。

图 2 *x*-y 平面上的三环阵列 LED Fig. 2 Three-ring array of LED on *x*-y plane

Fig. 3 Inner surface of hemisphere

讨论三环 LED 阵列的光照射到半球形内表面 上的辐照分布。由于 LED 是一种非相关光源,因此 对某一区域上的光照度为其单个的叠加。则半球形 内表面上的辐照分布可表示为

$$E(x, y, z) = z^{m} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{n=1}^{N} I_{j} \left\{ \left[x - r_{i} \cos\left(\frac{2\pi n}{N}\right) \right]^{2} + \left[y - r_{i} \sin\left(\frac{2\pi n}{N}\right) \right]^{2} + z^{2} \right\}^{-(m+2)/2}, \quad (5)$$

式中 N 为单个波段的 LED 数目。半球形内表面任意 一点 A(x,y,z) 的坐标可用笛卡尔坐标表示为

$$\begin{cases} x = r\sin\theta\cos\varphi \\ y = r\sin\theta\sin\varphi. \\ z = r\cos\theta \end{cases}$$
(6)

在半球形内表面的顶部有一个直径为 33 mm 的孔, 用于彩色视觉系统中的 CCD 相机的图像采集。因 此(5)式中的 θ 的取值范围可以确定。仿真参数为 $N=16, r_1=65$ mm, $r_2=59$ mm, $r_3=53$ mm, $\theta=$ $[\pi/18, \pi/2], \varphi=[0, 2\pi], r=80$ mm, $\theta_{1/2}=30^\circ, m=$ 4.82。球形内表面的辐照分布计算方法如下:半球 形表面的中心轴(z轴)垂直于 LED 环形阵列平面, 确定 θ 值后就可以得到对应的z值,利用(5)式得出 半球形表面上该z值所对应圆上每点的辐照分布。 随着 θ 值的不断变化,就得到了整个半球形内表面 的辐照分布。图4显示了球形内表面照度分布均匀 性的仿真结果。

图 4(a)显示了沿 x,y方向上的半球形内表面 照度均匀性分布,图 4(b)为半球形内表面三维照度 均匀性分布。由图 4 可知,该分布呈中心对称分布, 照度随着半球形的圆半径增加而增大。由于半球形 内表面是一个高漫反射表面,大部分光被漫反射表 面反射到检测平面就形成了间接照明。

Fig. 4 Uniform irradiance distribution of sphere inner surface

3.2 检测平面照度均匀性仿真

朗伯表面定义为在任意方向上辐射亮度不变的

表面,其半球反射率为1^[13]。由于半球形内表面是 一个高漫反射表面,可以近似看成是朗伯表面。对 于朗伯表面有

$$I_{\theta} = I_0 \cos \theta, \qquad (7)$$

式中 I。为沿法线方向上的辐射强度, θ为与法线的 夹角。检测平面上的辐照分布可以由下式给出

$$E' = \frac{E \cdot B \cdot dS \cdot \cos \theta}{d^{\prime 2}}, \qquad (8)$$

式中 E 为半球形内表面的照度分布,已经在 3.1 节 中求出,d'为半球形内表面与照射平面之间的距 离,S 为半球形内表面面积。B 定义为双向分布函 数,为了更好地描述漫反射光在空间各个方向上的 均匀性^[10],可由下式给出:

$$B = \rho/\pi, \qquad (9)$$

式中 ρ 为半球反射比,为了简化计算,将 dS 简化后得到

$$E' = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1}{mn} \frac{E(i,j) \cdot B \cdot \cos \theta}{d'^{2}}, \quad (10)$$

式中 *m*,*n* 为在半球形内表面取的采样点数目。 (10)式转化为笛卡尔坐标后得到

$$E'(x',y',z') = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{n} \left\{ \frac{1}{mm} \cdot \frac{E(i,j)\rho_{k} \left[(R\sin\theta\cos\varphi - x')\sin\theta\cos\varphi + (R\sin\theta\cos\varphi - y')\sin\theta\cos\varphi + (R\cos\theta - z')\cos\theta \right]}{\pi \left[(R\sin\theta\cos\varphi - x')^{2} + (R\sin\theta\cos\varphi - y')^{2} + (R\cos\theta - z')^{2} \right]^{3/2}} \right\}, \quad (11)$$

式中x', y', z'为检测平面的坐标,z'为检测平面与 LED之间的距离。

辐照均匀度定义为^[12]

$$U_{\text{uniformity}} = \frac{E_{\min}}{E_{\max}},$$
 (12)

检测平面照度均匀性仿真参数:由于漫反射表面是 自制的,很难达到理想的半球反射比 1,因此仿真时 设漫反射率 $\rho = 0.9$,检测平面距离与 LED 面板尺 寸 z' = 100,200 和 300 mm,检测平面的直径 R' = 100 mm。

图 5(a)显示了检测平面直径 R' = 100 mm,与 LED 面板距离 z' = 200 mm时的三维照度均匀性分 布,图 5(b)为沿 x,y 方向上的照度均匀性分布, 图 5(c)为沿 x 轴方向上的照度均匀性分布。检测 平面的照度呈中心对称分布,圆中心的照度值最高, 随着圆的直径增大而递减。

由图 5 可知,在检测平面到 LED 面板距离 z'= 200 mm 与 LED 面板尺寸 R=160 mm 相近时,其 照度均匀性为 94.9%。同时对三环形 LED 阵列直 接照射到距离为 200 mm 的检测平面上,检测平面 直径 100 mm 处,进行了均匀度仿真,结果仅为 74.5%。由仿真结果可知利用这种方法设计的光源 照度均匀性较好。

Fig. 5 Simulation results of illumination uniformity at z'=200 mm and the illuminated scene with source diameter R'=100 mm

4 实 验

为了证实上述方法的有效性,按照该方法制作 了实际光源进行实验。光源由两部分组成:三环形 LED 阵列以及具有高漫反射率内表面的半球组成。 图 6(a)显示了设计时选用的三种典型波段(CREE 5 mm 圆形,主波长 620,520 和 465 nm)的 LED 阵 列。图 6(b)是制作好的高漫反射率内表面,光源外 壳由铝加工而成,铝密度小而且是热的良导体,具有 高效能的散热作用,其表面经过氧化发黑处理,可以

减小光源环境杂散光的影响,内表面均匀喷涂了一 层高漫反射率材料,由硫酸钡、乳白胶和水按照不同 比例,多次喷涂而成。漫反射率的测量采用比对测 量的方法,以 99%标准漫反射白板(Spectralon, Labsphere Inc., North Sutton NH, USA)为基准, 在 PR-655分光式辐射度计(Photo Research Inc.) 上测量了半球形内表面的漫反射率。在所选择的 LED 主波长上(620,520和465 nm),漫反射率分别 为 88.5%,90.1%,90.8%。

图 6 (a) 三环形 LED 阵列,(b) 高漫反射率半球形内表面 Fig. 6 (a) three-ring LED array, (b) sphere inner surface with high reflectance

本文主要研究 LED 面板与检测平面的距离与 LED 面板尺寸接近时光照均匀度的分析,因此测量 距离 z[']采用为 100,200 与 300 mm。而且因为本文 中彩色视觉测量所要求的视野范围并不大,因此选 择了检测平面的照度测量范围为 100 mm 直径的 圆。为了尽量减小周围环境与 LED 发光稳定性的 影响,实验在暗室中并预热 30 min 后进行,采用 TES-1339 照度计进行照度的测量。照度计沿着检 测平面的 x 轴、y 轴,由中心向两侧等间隔对称地读 取数值,利用(12)式计算出辐照均匀度。沿 x 轴方 向与 y 轴方向所测的检测平面均匀性基本一致,可 知检测平面的照度呈中心对称分布,与仿真结果相 符。图 7(a),(b)和(c)分别显示了沿 x 轴方向检测 平面与 LED 面板尺寸距离 z'为 100,200 与 300 mm 时仿真与实际所测的均匀度对比。

Fig. 7 Comparison of simulation and experimental results of uniformity at varying distance z'=100, 200 and 300 mm

图 8 显示了以柯达白板为背景,三种不同波段的 LED 分别组合后的混光图像。图 8(a),(b)和(c)分别为 620 nm 与 520 nm,620 nm 与 465 nm,520 nm 与 465 nm,波段混光后采集的图像。可以看出图片颜色较均匀,未出现显单波段原色区域。图 8(d)为 620,520 与 465 nm 混光后采集的图像,对该图片所有像素值分 RGB 三通道取平均,结果为

(255,254.9921,255)。由像素平均值可知经过该方 法设计后的混光效果良好。由图 7 可以看出实验所 测的照度均匀性与仿真结果相差很小,证实了本文 的数学模拟算法的有效性。实测结果检测平面与 LED 面板距离 z'=100,200 和 300 mm,直径100 mm 圆的光照均匀度分别为:84.4%,91.6%,95.5%。虽 然随着距离的增加,光照均匀性越来越好,但是照度 也随之降低。在彩色视觉的实际应用中,可以根据 检测目标的实际尺寸及光照强度要求选择合适的距 离。仿真结果与实验结果在不同距离处的差别分别 为4.2%,3.1%,1.8%,最主要体现在两个方面,一 个方面是尽管 LED 经过挑选,但是也不能保证每个 LED 的亮度值完全一致;另一个方面是自制的高漫 反射率半球形内表面也不能够保证每一处的漫反射 率都完全一致。这些导致了实验结果与仿真结果的 微小差别。综上所述,实验结果证实了基于 LED 阵 列与漫反射表面的间接照明方式设计的均匀照明光 源的正确性。

图 8 不同波段 LED 混光图像

Fig. 8 Mixed-color images of LED array with various wavelengths

5 结 论

提出了基于环形 LED 阵列以及高漫反射表面 的一种间接照明方式,建立了数学模拟算法,进行了 辐照均匀性仿真。并通过实验证实了该设计方法与 数学模拟算法的正确性。检测平面的辐照均匀度效 果良好,多个波段 LED 阵列混光后的图像颜色均 匀。实验结果证实了该方法设计均匀照明光源的有 效性,对彩色视觉的发展具有重要意义。

参考文献

- I. Moreno, J. Munoz, R. Ivanov. Uniform illumination of distant targets using a spherical light-emitting diode array[J]. Opti. Eng., 2007, 46(3): 033001, 1~7
- 2 Lin Yue, Ye Liewu, Liu Wenjie *et al.*. Optimization algorithm of correlated color temperature for LED light source by dichotomy [J]. Acta Optica Sinica, 2009, **29**(10): 2791~2794
 - 林 岳,叶烈武,刘文杰等.二分法优化计算 LED 光源相关色 温[J]. 光学学报,2009, **29**(10): 2791~2794
- 3 Zhou Yinhua, Tang Yingwen, Rao Jianping *et al.*. Improvement for extraction efficiency of vertical GaN-based LED on Si substrate by photo-enhanced wet etching[J]. Acta Optica Sinica, 29(1): 252~255

周印华,汤英文,饶建平等.光增强湿法刻蚀Si衬底垂直结构 GaN基LED的出光效率[J].光学学报,29(1):252~255

- 4 I. Moreno. Design of LED spherical lamps for uniform far-field illumination[C]. SPIE, 2006, 6046: 60462E, 1∼7
- 5 Qu Xinghua, He Ying, Han Feng *et al.*. Illumination system for detecting random defects on strongly reflective and complex

surfaces[J]. Acta Optica Sinica, 2003, **23**(5): 547~551 曲兴华,何 灌,韩 峰等.强反射复杂表面随机缺陷检测照明

- 田兴平,何 注,韩 峰寺. 强反射复杂表面随机缺陷检测照明 系统分析[J]. 光学学报, 2003, **23**(5): 547~551
- 6 Yu Xiaolei, Zhao Zhimin, Wang Donghua. Selection of light source for on-line nep detection system[J]. Chinese J. Lasers, 2008, 35(5): 788~791

俞晓磊,赵志敏,汪东华.棉结在线检测系统中的光源选择[J]. 中国激光,2008,**35**(5):788~791

- 7 S. K. Kopparapu. Lighting design for machine vision application
 [J]. Image and Vision Computing, 2006, 14(24): 720~726
- 8 Y. Ding, X. Liu, Z. Zheng et al.. Freeform LED lens for uniform illumination [J]. Opt. Express, 2008, 16 (17): 12958~12966
- 9 Ding Yi, Gu Peifu. Freeform reflector for uniform illumination
 [J]. Acta Optica Sinica, 2007, 27(3): 540~544
 丁 毅,顾培夫.实现均匀照明的自由曲面反射器[J]. 光学学

报,2007,**27**(3):540~544

- 10 I. Moreno. Configurations of LED arrays for uniform illumination[C]. SPIE, 2004, 5622: 713~718
- 11 I. Moreno, M. A. Alejo, R. I. Tzonchev. Designing lightemitting diode arrays for uniform near-field irradiance [J]. *Applied Optics*, 2006, 45(10): 2265~2272
- 12 A. J. W. Wang, Y. Y. Chen, Y. T. Teng. Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays[J]. Journal of Display Technology, 2009, 5(3): 94~103
- 13 Jia Hui, Li Futian. Application of BaSO₄ diffuse plate in 250~400 nm spectral radiance calibration [J]. Spectroscopy and Spectral Analysis, 2004, 24(1): 4~8

贾 辉,李福田.硫酸钡漫反射板在 250~400 nm 光谱辐射亮度 标定中的应用研究[J].光谱学与光谱分析, 2004, **24**(1): 4~8